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1. Introduction

While extensive research exists on single-species harvesting, there has been a shift
towards more ecosystem-based fishery management (EBFM). Addressing economic ques-
tions and informing policymakers require models with a broader perspective of fish re-
sources and presenting technical challenges such as increased state variables and nonlinear
species growth functions. This study addresses these challenges by presenting a workable
parametric example considering strategic, simultaneous and selective harvesting in a two-
species predator-prey system. This serves as a basis for exploring policy recommendations
and inefficiencies in dynamic models of endogenous fishing.

Species exist within complex ecosystems and cannot be seen as separate resources.
Nevertheless, modeling interacting species presents challenges owing to nonlinear species
dynamics. Despite this, biologists and mathematicians explored multi-species models,
especially predator-prey models, owing to their interesting dynamic properties such as
periodic solutions, limit cycles, and stability. Economic studies on multi-species models
are scarce, partly because the introduction of endogenous harvesting increases complexity.
Early works that integrated harvesting behaviors in two-species models seeking long-term
solutions, include works by Hannesson [14], Flaaten [12], May et al. [18], and Querou and
Tomini [20], among others. This study provides the first insights into multispecies man-
agement challenges, the influence of fish market prices, and the trade-offs in ecosystem
management, as discussed very recently by Bataille et al. [2]. However, few studies ana-
lytically characterize strategic and optimal harvesting paths in multi-species models. A
significant study by Fischer and Mirman [10] extends Levhari and Mirman [17] to include
a biological externality in which two players fish for two distinct interacting species, offer-
ing initial insights into the exploitation mechanisms in such settings. Fischer and Mirman
[11] further develop their model by adding direct strategic interactions, which they call
‘’compleat fish wars’. These foundational discrete-time analyses spurred extensive eco-
nomic studies in this area. Extensions include models with n players by Okuguchi [19],
the consideration of asymmetries by Rettieva [21], the exploration of cooperative behavior
and coalition stability by Breton and Keoula [3], and the introduction of uncertainty by
Antoniadou et al. [1].

The literature relies on parametric examples because of the challenge of obtaining
general results. However, the choices made by modelers, such as solution concepts and
functional forms, are subject to criticism. Traditionally, the fishery literature focused pri-
marily on examining open-loop Nash equilibria, often referred to as commitment strate-
gies, because of their relative ease of implementation (see, e.g., Clark and Munro [5]).
A significant drawback of this equilibrium concept is its vulnerability to perturbations,
which is a particularly pertinent issue in fisheries where disturbances are common. In ad-
dition, whether fishermen can consistently commit to a fixed temporal trajectory remains
unanswered. In this study, we did not aim to affirm that feedback strategies inherently
offer superior predictive capabilities for real-life fishery problems. Rather, we present
a specific illustrative example in which fishers use decision rule strategies that can be
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derived analytically, and the constraints imposed on the primitives of the problem are
comparatively less stringent than those in the existing literature.

Even in single-species models, the existing literature demonstrated that obtaining an-
alytical solutions for feedback strategies can be challenging, with some exceptions for
specific game classes (refer to Dockner et al. [7] for a comprehensive review). Notably, an-
alytical tractability is facilitated when the problem is linearized in state, assuming that the
objective and natural growth functions of the species share at least one common parame-
ter (see Van Long [22] and Gaudet and Lohoues [13] for more details). This requirement
connects the payoff function structure to the reproductive function of the species. In the
multispecies context, several studies implicitly adopted this assumption by employing log-
arithmic utility functions and Cobb-Douglas species growth functions (e.g., Fischer and
Mirman [10]; Doyen et al. [9]; Breton et al. [4]). Expanding beyond this specific framework
requires explicitly imposing constraints on player payoffs and species growth functions.
Koulovatianos [16] recently addresses the issue by examining corner solutions and intro-
ducing uncertainty, a departure from the standard log-utility and Cobb-Douglas growth
models. While the author does not explicitly provide justification for these constraints,
they possess the notable quality of enabling (i) continuous-time results within a class
of constant elasticity of marginal utility, facilitating the full characterization of feedback
strategies, and (ii) precise examination of the consequences of simultaneous harvesting
across ecosystems with multiple species, along with associated policy implications that
remain insufficiently understood.

Our aim is to enrich the existing literature by presenting a tractable model for simul-
taneous exploitation in a predator-prey system. We diverge from recent works such as
Doyen et al. [9] and Breton et al. [4], which mainly use the same model as in Fischer
and Mirman [10], that is, a discrete-time analysis with logarithmic payoffs and Cobb-
Douglas species growth functions. Rather, we build on Koulovatianos [16] by opting for
a continuous-time framework with payoff functions with a constant elasticity of marginal
utility, following Gaudet and Lohoues [13]’s recommendations for the choice of species
dynamics. Our model introduces two key extensions from Koulovatianos [16]: (i) we
consider equilibria involving simultaneous harvesting across the ecosystem, and (ii) we
contrast strategic solutions with a centralized system accounting for all externalities. This
model not only stands as a valuable example in itself but also aids researchers in exploring
species harvesting behaviors in a less restrictive context and may guide future research
toward more general model formulations.

Using Koulovatianos [16]’s approach, we model an infinite-horizon strategic dynamic
setting in which two specialized fleets target either the prey or predator species and are
allowed to catch them simultaneously. We apply a parametric constraint linking fishers’
payoffs to the biological growth of both species, enabling analytical solutions for harvest-
ing and stock flows. Subsequently, we introduce a sole-owner management scenario for
ecosystem efficiency and compare its outcomes with those of a decentralized solution. The
key findings are as follows. We identify the existence of a unique feedback–Nash equilib-
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rium with species-specific linear harvesting strategies. This study also offers an optimal
extraction approach involving catching a fixed proportion of each stock. Furthermore, we
compare the decentralized and centralized systems, indicating the potential for over-or
underfishing of predators. Finally, we provide a numerical illustration that elucidates the
influence of industry size on stock levels and harvesting flows in both regimes.

The remainder of this paper is structured as follows. The next section introduces the
model’s core components. Section 3 outlines the regimes decentralized and centralized
regimes. Section 4 discusses the existence and uniqueness of the feedback-Nash equi-
librium with linear species-specific harvesting strategies. In Section 5, we compute and
compare the outcomes of the centralized solution with those of the decentralized regime,
focusing on comparative statics to assess fleet size effects on fishing pressure. Section 6
provides stylized examples of stock and harvesting flows for various industry sizes. All
the proofs are provided in the Appendix.

2. The model

The theoretical framework of this study is primarily based on that of Koulovatianos
[16]. It centers on a two-species system consisting of a prey population denoted by x(t) and
a predator population denoted by y(t). The dynamics of these populations are described
by the following system of first-order non-linear differential equations:

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ,

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ,
(1)

where ẋ(t) and ẏ(t) represent the time variation of prey and predator stock, respectively.
The parameters in the model have the following interpretations for each species s ∈ {x, y}:
As is the intrinsic reproductive rate, 0 < θ < 1 scales the reproductive rate with the
population size, and δs represents the natural mortality rate. The parameters bx and
by denote the rates at which predators consume and convert prey, respectively, and they
depend on the predator-to-prey population ratios. Therefore, the natural growth function
of species Ass(t)

θ−δss(t) is strictly concave and has a typical inverted U shape. This model
incorporates the Holling Type II response, which accounts for the limited prey-processing
ability of predators, whereby prey availability relative to population size constrains the
predator’s consumption rate.

The initial assumption constrains the parameter space to ensure a positive steady-state
without human intervention.

Assumption 1. Axδy > Aybx.

This restriction sets a lower bound on the relative implicit growth rates of the prey and
predators, ensuring a relatively large prey growth rate for coexistence. This guarantees a
positive interior steady state (x̄, ȳ) in system (1), maintaining non-negative populations
for both species.
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We next introduce the economic activities. We focus on prey and predator harvesting,
represented by hs(t) for species s ∈ {x, y}. These populations are harvested by two
distinct groups of specialized harvesters, each comprising ns individuals who derive utility
from fishing. We denote the common discount factor as ρ > 0 and consider a prey fisher
denoted by i ∈ {1, 2, . . . , nx} and a predator fisher denoted by j ∈ {1, 2, . . . , ny}. These
individuals derive utility over an infinite time horizon through harvesting activities. The
payoff functions associated with these agents exhibit standard properties and can be
described as follows:[

J s,k

(
hs,k(·)

)]k=1,...,ns

s=x,y

=

∫ ∞

0

hs,k(t)
1−ν

1− ν
exp−ρt dt, (2)

where the parameter ν represents the inter-temporal smoothness preference in harvesting
and is assumed to be identical across all players and industries1. Therefore, the species
dynamics under simultaneous and specialized harvesting are given as follows:

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ −
∑nx

i=1hx,i(t),

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ −
∑ny

j=1hy,j(t).
(3)

For tractability in this context, a connection between the objective function and species
dynamics is essential, as Gaudet and Lohoues [13] and Van Long [22] note. Considering
payoffs with constant marginal utility elasticity ν, we equalize this elasticity to the con-
cavity level θ of the growth function of the species.

Assumption 2. θ = ν

Here, we unify θ and ν as a single parameter. While this may limit empirical analysis, it
facilitates analytical results in predator-prey models with simultaneous harvesting, which
is our primary focus. Future work could extend these findings by relaxing this assumption
through numerical simulations. However, this analysis is beyond the scope of this study.

3. Decentralized and centralized maximization problems

3.1. The differential game

The strategic framework for this problem is conventional. It involves two distinct
groups of specialized players, or fishers, who make decisions regarding their harvesting

1Theses payoffs functions belong to the class utility with constant elasticity of marginal utility. Loga-
rithmic preference are only a limiting case of (2) when ν approaches 1. Using L’Hôpital’s Rule, we have
limν→1(1−θ)h−θ/ limν→1(−1)⇔ limν→1

d(1−ν)log(h)
dν / limν→1

d(1−ν)
dν ⇔ limν→1(−1)log(h)/ limν→1(−1) =

log(h).
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plans for specific species. Specifically, given x(0), y(0) > 0 a prey fisher i choose his har-
vesting paths, hx,i(t), that maximizes (2) while considering species dynamics (3) and feed-
back strategies from other prey fishers, ϕx,k(x(t), y(t)) ∀k ∈ {1, . . . , nx − 1} and predator
fishers’ feedback strategies, ϕy,j(x(t), y(t))∀j ∈ {1, . . . , ny}. The maximization problem is

max
hx,i(·)

J x,i

(
hx,i(·)

)

s.t.

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ − hx,i(t)−
nx∑

k=1,k ̸=i

ϕx,k(x(t), y(t))

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ −
ny∑
j=1

ϕy,j(x(t), y(t))

(4)

x(0), y(0) > 0.

Likewise, given x(0), y(0) > 0 a predator fisher j chooses the flow of harvest, hy,j(t),
such that (2) is maximized knowing the species dynamics (3) and the feedback strategies
of other predator fishers ϕy,k(x(t), y(t)) ∀k ∈ {1, . . . , ny − 1}, and prey fishers’ feedback
strategies ϕx,i(x(t), y(t))∀i ∈ {1, . . . , nx}. The maximization problem can be formally
written as

max
hy,j(·)≥0

J x,i

(
hx,i(·)

)

s.t.

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ −
nx∑
i=1

ϕx,i(x(t), y(t))

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ − hy,j(t)−
ny∑

k=1,k ̸=j

ϕy,k(x(t), y(t))

(5)

x(0), y(0) > 0.

This dynamic game involves two externalities: strategic interactions within industries
competing for common stock, and cross-industry effects due to predator-prey relationships
among species. In this context, decision rules are inherently history-independent, allowing
the application of dynamic programming techniques. The assumption is that fishers
can observe and react to stock levels at a given time independent of past events. It is
reasonable to assume that because our problem is autonomous, we consider only time-
independent strategies. The timing of the decision does not alter the game’s infinite
nature or fundamentals. Therefore, decision rules are influenced only by time through
stock levels.

Solving this problem, particularly in the context of two interacting species, remains
challenging and potentially yields infinite solutions, as Dockner and Sorger [8] discuss.
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To address this complexity, we restrict the strategy space of the players. Specifically,
building on the common property natural resource game literature, including Van Long
and Shimomura [23], Clemhout and Wan [6], and Fischer and Mirman [10], we seek
decision rules that are linear functions of stock size. Each fisher is presumed to believe that
others employ species-specific linear harvesting strategies, allowing adaptive adjustments
based on the current stock relevant to their specialization:(

ϕs,k(s(t))

)k=1,...,ns

s=x,y

= ωs,ks(t), (6)

where ωs,k represents the individual catch rates for a player in industry s. This assumption
implies that fishers targeting prey or predators can adapt their strategies based solely on
the current stock levels of their target species. Consequently, the concept of equilibrium
was introduced.

Definition 1. (ωNE
x,1 x(t), ω

NE
x,2 x(t), . . . , ω

NE
x,nx

x(t)) and (ωNE
y,1 y(t), ω

NE
y,2 y(t), . . . , ω

NE
y,ny

y(t)) con-
stitute a linear Feedback Nash Equilibrium (FBNE) if and only if

• For each i ∈ {1, . . . , nx}, there exists an optimal control path hNE
x,i (t) solution to (4),

given by the feedback strategy hNE
x,i (t) = ωNE

x,i x(t) and,

• For each j ∈ {1, . . . , ny}, there exists an optimal control path hNE
y,j (t) solution to

(5), given by the feedback strategy hNE
y,j (t) = ωNE

y,j y(t).

3.2. The sole-owner problem
We address the scenario of a sole owner with exclusive rights and the requisite tech-

nology to harvest both species simultaneously. This simplified hypothetical problem aims
to formulate the optimal policies for managers or institutions to exploit and manage an
ecosystem over time. The decision maker selects individual harvesting paths for the prey
and predators, denoted by hx,i(t) for i ∈ {1, . . . , nx} and hy,j(t) for j ∈ {1, . . . , ny}, re-
spectively, with the objective of maximizing the sum of the discounted payoffs. Thus, the
optimal control problem is

max
(hs,k(·))k=1,...,ns

s=x,y ≥0

ns∑
k=1

J s,k

(
hs,k(·)

)k=1,...,ns

s=x,y

s.t.

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ −
nx∑
i=1

hx,i(t)

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ −
ny∑
j=1

hy,j(t)

(7)

x(0), y(0) > 0

6



We seek to identify the two control vectors that yield the highest average utility
across both industries. Compensation may occur, allowing the sole owner to implement
harvesting in the industry, which contributes to an overall higher utility. This concept
of compensation is crucial in our context, considering the interdependence of species and
potential system-wide repercussions of harvesting.

Definition 2. An optimal solution is defined as a specific set of harvesting strategies,
(ĥx,1(t), . . . , ĥx,nx(t)) and (ĥy,1(t), . . . , ĥy,ny(t)) that solve (7).

4. Species-specific linear feedback-Nash equilibrium

To establish the equilibrium existence of the differential game given by Definition 1, our
analysis relies on dynamic programming techniques, and more specifically, Theorem 4.1 of
Dockner et al. [7]. This theorem specifies three essential conditions for the existence of a
feedback-Nash equilibrium: (i) the existence of a value function satisfying the Hamilton-
Jacobi-Bellman equation for each player, (ii) a unique, continuous solution for the system
dynamics driven by feedback strategies, (iii) convergence of the value function. This
section is structured around the three aforementioned conditions.

Our problem involves two industries, each with symmetrical players, exploiting one
of the two interacting species. Rather than finding two sets of value functions for each
player in both industries, the symmetry property within industries allows us to focus on
finding only a pair of value functions, V x(x, y) and V y(x, y), which represent individual
prey and predator fishers, respectively. The Hamilton-Jacobi-Bellman (HJB) equations
for the individual prey and predator fishers, respectively, are given by

ρV x(x, y) = max
hx≥0

{
h1−θ
x

1− θ
+ ∂xV

x(x, y)

(
Axx

θ − δxx− bxy
1−θxθ − hx − (nx − 1)ωxx

)
(8)

+ ∂yV
x(x, y)

(
Ayy

θ − δyy + byx
1−θyθ − nyωyy

)}
and,

ρV y(x, y) = max
hy≥0

{
h1−θ
y

1− θ
+ ∂xV

y(x, y)

(
Axx

θ − δxx− bxy
1−θxθ − nxωxx

)
(9)

+ ∂yV
y(x, y)

(
Ayy

θ − δyy + byx
1−θyθ − hy − (ny − 1)ωyy

)}
.

In each case, the left-hand side denotes the present value of the objective in state (x, y).
This value should be equal to the immediate reward of choosing harvesting optimally, in
addition to the expected future rewards resulting from state changes and knowing that
opponent fishers use linear species-specific strategies. We construct V x(x, y) and V y(x, y)
such that they have the following functional forms:
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V x(x, y) = αx +
βxx

1−θ

1− θ
+

γxy
1−θ

1− θ
and V y(x, y) = αx +

βyx
1−θ

1− θ
+

γyy
1−θ

1− θ
, (10)

where αx, βx, γx, αy, βy, γy must be defined by identification. The optimal condition of the
HJB equations given in (8) and (9) implies that a prey and predator fisher will choose
their harvesting such that they exploit a fixed fraction of the stock of fish they target.

hx = β−1/θ
x x = ωxx and hy = γ−1/θ

y y = ωyx, (11)

where β
−1/θ
x = ωx and γ

−1/θ
y = ωy indicate the individual catch rates. Substituting

Equations (10) and (11) into (8) and (9) leads to a system of equations determining the
values of the six coefficients αx, βx, γx, αy, βy, and γy simultaneously. The following
lemma provides a solution for individual catch rates within industries.

Lemma 1. By identification, there exist a unique set of parameters αx, βx, γx, αy, βy,
and γy such that V x(x, y) and V y(x, y) in (10) satisfy (8) and (9) for all (x, y). Moreover,
β
−1/θ
x = ωNE

x and γ
−1/θ
y = ωNE

y solve the following implicit system of equations:(
ρ

1− θ
− ωNE

x (
1

1− θ
− nx) + δx

)(
ρ

1− θ
+ δy + nyω

NE
y

)
+ bxby = 0, (12)

(
ρ

1− θ
− ωNE

y (
1

1− θ
− ny) + δy

)(
ρ

1− θ
+ δx + nxω

NE
x

)
+ bybx = 0, (13)

and are positively valued if and only if nx < 1
1−θ

and ny <
1

1−θ
.

Remark 1. Setting ny = 0 in Equation (12) and nx = 0 in Equation (13) yields the
corner solutions for only one active industry, as in Koulovatianos [16].

The second important condition, as outlined in Dockner et al. [7], requires that we
investigate whether the system dynamics (3) yield a unique and continuous solution when
fishers choose to extract a fraction of the fish stock. Under linear harvesting strategies
expressed as (6), the system dynamics (3) can be equivalently reformulated as follows:

ẋ(t) = Axx(t)
θ − δxx(t)− bxy(t)

1−θx(t)θ − nxωxx(t), x(0) > 0

ẏ(t) = Ayy(t)
θ − δyy(t) + byx(t)

1−θy(t)θ − nyωyy(t), y(0) > 0
(14)

We make the following changes to the basis for our resource stock variables:[
X(t)
Y (t)

]
=

[
x(t)1−θ

y(t)1−θ

]
, (15)

Taking the time derivative and replacing it with (14) yields the transformed system
dynamics under linear strategies:
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[
Ẋ

Ẏ

]
= (1− θ)

[
Ax

Ay

]
︸ ︷︷ ︸

C

+(1− θ)

[
−δx − nxωx −bx

by −δy − nyωy

]
︸ ︷︷ ︸

D

[
X(t)
Y (t)

]
, (16)

The system dynamics become linear in states with constants C and D. Given the
initial conditions X(0) = x(0)1−θ > 0 and Y (0) = y(0)1−θ > 0, the solution is[

X(t)
Y (t)

]
= etD

[
X(0)− X̄
Y (0)− Ȳ

]
+

[
X̄
Ȳ

]
, (17)

where the steady-state stocks, X̄ and Ȳ , are strictly positive under Assumption 1 and are
given by [

X̄
Ȳ

]
= −D−1C, (18)

[
X̄
Ȳ

]
=

(1− θ)2

Det(D)

[
δyAx − bxAy +

∑ny

j=1 ωy,jAx

byAx + δxAy +
∑nx

i=1
ωx,iAy

]
>> 0. (19)

The following lemma summarizes this discussion.

Lemma 2. The linear dynamic system (16) admits a unique continuous function solution,
as defined in Equation (17), which depends linearly on the initial conditions and converges
to a globally stable positive steady state under Assumption 1.

Finally, the last important condition is to verify the transversality conditions, which is
crucial given our unbounded time horizon (t ∈ [0,∞)) and unbounded payoffs (J x,J y).
A consistent interpretation of the equilibrium requires analyzing the value function’s con-
vergence over an infinite timespan. Under the linear harvesting strategies, the equilibrium
payoffs (as defined in (2)) exhibit linearity in the transformed state variables X(t), Y (t).
Consequently, the equilibrium payoff flows are driven only by stock trajectories, mean-
ing that the convergence conditions predominantly rely on the matrix D’s properties.
Lemma 2 indicates that because of the trace and determinant criteria, the real parts of
the eigenvalues of D are negative. However, convergence depends on the structure of etD,
which means we must consider: (i) two distinct real eigenvalues, (ii) two repeated real
eigenvalues, and (iii) two complex eigenvalues, as none can be excluded. The subsequent
lemma provides the results with detailed proofs in Appendix C.

Lemma 3. Regardless of the properties of D, the value functions V x(x(t), y(t)) and
V x(x(t), y(t)) in (10) satisfy :

lim
t→∞

e−ρtV x(x(t), y(t)) = 0 and lim
t→∞

e−ρtV y(x(t), y(t)) = 0. (20)

The main result of this section is now complete because all three key conditions spec-
ified in Dockner et al. [7] have been verified. Our feedback-Nash equilibrium is subgame
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perfect because the differential game in (4) and (5) occurs over an infinite time span and
is autonomous. Consequently, any subgame of the entire game is of equal length and
yields solutions independent of the initial conditions. Additionally, our equilibrium has
the property that the value function in (10) satisfies the transversality conditions in (20),
and serves as a unique functional form that solves (8) and (9) within the framework of
linear species-specific strategies. This can be attributed to the linearity of payoffs with
respect to the transformed state variables X(t), Y (t) as well as its linearity with respect
to the initial conditions in (17), providing a clear justification for the functional forms
utilized in (10). The following proposition concludes this section:

Proposition 1. Given the conditions established in Lemmas 1-3, (ωNE
x x(t), . . . , ωNE

x x(t)),
and (ωNE

y y(t), . . . , ωNE
y y(t)) constitute a subgame perfect feedback-Nash equilibrium. The

respective value functions for the prey and predator fishers are:

V x(x(0), y(0)) = αx +
βx

1− θ
x(0)1−θ +

γx
1− θ

y(0)1−θ (21)

and
V y(x(0), y(0)) = αy +

βy

1− θ
x(0)1−θ +

γy
1− θ

y(0)1−θ (22)

with the additional property that this is the unique functional form in which linear har-
vesting strategies occur.

5. Nash versus sole-ownership

In the previous analysis, we explicitly characterized the private harvesting behavior in
an unregulated two-species predator-prey ecosystem. This section aims to (i) characterize
an optimal solution to the sole-owner problem, as in Definition 2, and (ii) compare fishing
pressures under decentralized and centralized regimes. Having addressed the technical
aspects earlier, we now focus on the implications of centralized management for ecosystem
sustainability, contrasting it with outcomes under private, unregulated practices.

5.1. The sole-owner optimal allocation
To manage the predator-prey ecosystem, a comprehensive exploitation model that

accounts for all externalities is necessary. To do so, we aim to solve the sole-owner problem,
as detailed in the maximization problem (7). Here, the sole owner acts as the manager and
distributes the harvested quantities among the players. This approach assumes symmetric
players within industries, akin to a decentralized equilibrium, with the goal of maximizing
the combined industry payoffs. Given the concavity of payoffs with respect to harvesting
(see (2)), the optimization hinges on identifying industry controls hx(t), hy(t) that are
symmetric within industries and maximize (1−θ)−1(nxhx(t)

1−θ+nyhy(t)
1−θ), considering
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the system dynamics2. The existence of an optimal solution is grounded in Theorem 3.4
of Dockner et al. [7], where the choice of the form of the value function, along with the
optimality and transversality conditions, ensures a solution. Denoting the value function
for a sole owner in state (x, y) as V̂ (x, y), the Hamilton-Jacobi-Bellman (HJB) equation
is given by

ρV̂ (x, y) = max
hx,hy≥0

{
(1− θ)−1

(
nxh

1−θ
x + nyh

1−θ
y

)
+ ∂xV̂ (x, y)

(
Axx

θ − δxx− bxy
1−θxθ − nxhx

)
+ ∂yV̂ (x, y)

(
Ayy

θ − δyy + byx
1−θyθ − nyhy

)}
. (23)

This partial differential equation connects the optimal value function in states (x, y)
with the immediate rewards of optimal control choices along with the anticipated future
gains from such optimal controls. Conjecturing the value function takes the following
form:

V̂(x, y) = α̂ +
β̂

1− θ
x1−θ +

γ̂

1− θ
y1−θ. (24)

The optimal conditions for HJB are

ĥx = β̂−1/θx = ω̂xx and ĥy = γ̂−1/θy = ω̂yy. (25)

These conditions imply that an optimal control strategy involves harvesting a fixed
fraction of the stock for each species, denoted by β̂−1/θ = ω̂x and γ̂−1/θ = ω̂y. By
combining (24) and (25) into (23), we use the undetermined coefficient technique to obtain
the values of α̂, β̂, and γ̂. Moreover, from Lemma 2, we derive stock solutions under linear
harvesting, and from Lemma 3, we satisfy the transversality conditions. The following
proposition summarizes the optimal harvesting by the sole owner.

Proposition 2. There exists a unique set of parameters α̂, β̂, and γ̂ such that V̂(x, y) in
(24) satisfies (23) for all (x, y). Moreover, β̂−1/θ = ω̂x and γ̂−1/θ = ω̂y solve the following
implicit system of equations:

ω̂−θ
x

(
ρ

1− θ
+ δx − nxω̂x

θ

1− θ

)
− ω̂−θ

y by = 0, (26)

ω̂−θ
y

(
ρ

1− θ
+ δy − nyω̂y

θ

1− θ

)
+ ω̂−θ

x bx = 0. (27)

2Consider that symmetry is not the best choice and that there exist two asymmetric harvesting paths
within industry s = x, y such that hs,l ≤ hs,l′ , where l ̸= l′ ∈ {1, . . . , ns}. As the utility function is
concave, we have Us(λhs,l + (1 − λ)hs,l′) ≥ λUs(hs,l) + (1 − λ)Us(hs,l′) ∀λ ∈ [0, 1]. Imposing λ = 1/2
yields Us(hs,l/2 + hs,l′/2) ≥ 1/2Us(hs,l) + 1/2Us(hs,l′), which means that the average of Us(hs,l) and
Us(hs,l′) is less than the symmetric solution.
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The corresponding optimal value function is

V̂(x, y) = α̂ +
β̂

1− θ
x(0)1−θ +

γ̂

1− θ
y(0)1−θ. (28)

5.2. Comparing catch rates
In renewable resource management, understanding optimal policies is crucial for un-

derstanding social efficiency and private-sector limitations. Many studies compare private
and optimal exploitation in single-species scenarios; however, this becomes more complex
with multiple species. This complexity stems from the technical challenges in solving
dynamic models with several variables and various inefficiencies, including strategic and
biological interactions, which affect the outcomes differently (refer to Bataille et al. [2]).
Our model addresses these technicalities by comparing fishing pressures under decen-
tralized and centralized regimes. We first analyze the effects of the number of prey and
predators fishers on extraction rates and then compared fishing pressures in both regimes.

In our comparative statics analysis of fishing pressure relative to industry size, we
introduce a new sufficient condition. Unlike Lemma 1 which bounds the fishery sizes
separately, this condition limits the combined size of the industries, expressed as nx+ny <
1

1−θ
. This condition, which is more restrictive than Lemma 1, enables a straightforward

calculation of how the predator-prey industry size affects individual fishing pressure in
the Nash equilibrium versus sole ownership. The findings, which are mainly based on
the Implicit Function Theorem, are presented in Table 1, with detailed proofs in Section
Appendix F.

ωNE
x (nx, ny) ωNE

y (nx, ny) ω̂x(nx, ny) ω̂y(nx, ny)

No. of prey fisheries (nx) + − − +
No. of predator fisheries (ny) − + − −

Table 1: Effects of varying the number of fisheries on the individual fishing pressure.

The first two columns reveal how the numbers of prey and predator fishermen influence
individual catch pressure in a decentralized regime, whereas the last two columns show
analogous effects under optimal management.

The within-industry effects show that increased competition in a decentralized regime
leads to higher resource pressure, which aligns with the common-pool resource (CPR)
literature. This is evident as ∀s = x, y ∂nsω

NE
s (nx, ny) > 0 implies ∂nsnsω

NE
s (nx, ny) > 0.

Conversely, under optimal management, a higher number of fishermen leads to reduced
individual pressure, aligning with efficient resource allocation principles.

Regarding between-industry effects, fishers’ strategic adaptations to changes in indus-
try size are mainly influenced by biological interactions. In the decentralized regime, an

12



increase in the number of prey fishermen reduces individual predator fishing pressure,
owing to greater pressure on the prey and subsequent reduced predator regeneration.
Conversely, under sole ownership, more prey fishermen lead to less pressure on prey, in-
centivizing increased pressure on predators to prevent prey stock depletion from predators.
Similarly, more predator fishers decrease the predation intensity on prey in both regimes
as competition among prey fishermen and natural predators decreased.

The comparative statistics reveal that in multispecies ecosystems with externalities,
the standard common externality (i.e., the intensity of strategic interaction) significantly
affects the entire system. This information is vital for managers to formulate fishery reg-
ulations. The subsequent step involved comparing fishing pressures under centralized and
decentralized regimes to identify economic inefficiencies and underscore the complexity of
managing these ecosystems.

Our first key finding is that the individual prey catch rates selected by fishers in a de-
centralized regime are invariably lower than those chosen by the sole owner in a centralized
system. This outcome is primarily influenced by the fact that in the decentralized regime,
an increase in predators consistently reduces the lifetime utility of each prey fisher; that
is, ∂yV x(x, y) < 0 (refer to Appendix D). This dynamic leads to higher fishing pressure
on the prey stock in the decentralized system compared to that of the sole owner, who
benefits from the presence of more predators.

In contrast, the predator industry size mechanism differs, because more prey generally
benefits predator fishers in both regimes. Thus, the comparison depended significantly
on the relative numbers of prey and predator fishermen and the intensity of biological
interactions between species. For instance, a sole owner considers that an increase in prey
(i.e., less prey fishing pressure) might lead to a higher predator fishing intensity, but this
advantage needs to be weighed against the negative impacts on prey fishers. However,
in a decentralized system, predator fishermen always benefit from an increase in prey.
Consequently, there could be scenarios where, given specific prey and predator industry
sizes, decentralized fishing pressure is too low compared to a centralized system, because
individual predator fishermen focus solely on their own harvest and utility.

To illustrate our findings, we provide a numerical example with fixed biological and
economic parameters except for industry size. This approach enables us to compare
decentralized and centralized predator fishing pressures across different predator-to-prey
industry ratios within a consistent setting. The parameters for this example are listed in
Table 2.

θ δx δy Ax Ay bx by ρ x(0),y(0)
0.9 0.5 0.5 0.5 0.5 0.2 1.5 0.5 0.1

Table 2: Parameter values

In this stylized example, we use Equations (12), (13), (26), and (27) to plot the implicit
function that identifies all combinations of nx and ny satisfying ωNE

y (nx, ny) = ω̂y(nx, ny)
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for nx, ny < 1
1−θ

. Based on the results in Table 1, this function increases in the (nx, ny)
plane. The corresponding graphical representation is presented in Figure 1.

Figure 1: ωNE
y (nx, ny) vs ω̂y(nx, ny)

This figure divides the parameter space between prey and predator fisher numbers,
allowing for a comparison of fishing pressures in the centralized and decentralized regimes.
Given that these numbers are integers, there seems to be no exact industry size pairing in
which the two fishing pressures equalize. However, in this example, if only one predator
fisher is allowed, the fishing pressure under the Nash equilibrium is consistently lower than
that under optimal management, regardless of the size of the prey industry. Conversely,
with two predator fishers, the decentralized regime consistently led to excessive predator
pressure, irrespective of the prey industry size. These results indicate that managing
standard common externalities, specifically when exclusive rights are given to a single
predator fisher, can lead to increased economic costs due to underfishing pressure, espe-
cially in the context of ecosystem-based spillovers. The following proposition summarizes
catch rate comparisons under the two regimes.

Proposition 3. A comparative analysis of fishing pressures under the Nash equilibrium
and sole ownership reveal the following.
(i) Individual and aggregate prey fishing pressure are higher under a Nash equilibrium than
under optimal management; that is, nxω

NE
x (nx, nx) > nxω̂x(nx, ny) for all nx, ny <

1
1−θ

.
(ii) A general ranking of individual and aggregate predator fishing pressure between the
two regimes is impossible.
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A comparison between optimal and private fishing pressures revealed inefficiencies
and underscores the impact of strategic and biological interactions. Although this is a
significant first step, it leaves open the question of differences in species dynamics and har-
vesting quantities along the equilibrium path. This is an important question because (i)
predator-prey models have been studied extensively for their dynamic properties, making
the analysis of solutions with endogenous harvesting interesting, and (ii) understanding
the harvesting dynamics in the multi-species context is necessary for managers to design
time-consistent regulatory instruments such as quotas or harvesting taxes.

6. Industry size, stocks and harvesting flows

In the absence of species interactions, increased fishing pressure on a particular stock
tends to lower its intrinsic growth rate or raise its mortality rate, both of which reduce
stock size. However, in a multispecies scenario, the relationship between fishing pressure
and harvest becomes complex and is influenced by ecosystem-wide spillover effects. To
determine the effect of industry size on harvest quantities theoretically, it is important
to consider its effects on predator-prey dynamics (as shown in Equation (17)) and fishing
pressure (as in Table 1). Because of the mathematical complexity of the comparative
statics of stock trajectory functions, we opted for a numerical simulation approach. Re-
ferring to the example in Table 2, we illustrate the stock and harvesting flows under both
centralized and decentralized regimes for various industry sizes. In the subsequent figures,
we set one industry (prey or predator) as a single harvester and vary the size of the other
industry by ns = 1, 2, 3. The legends for all graphs are as follows:

Regime ns = 1 ns = 2 ns = 3
Sole owner

Nash

Table 3: Legend for stock and harvesting flows with ns = 1, 2, 3

6.1. The effect on predator-prey dynamics
Figure 2 shows how the prey and predator stocks change with more prey fishers (i.e.,

nx = 1, 2, 3) in the decentralized and centralized regimes. More prey fishers lead to lower
prey stocks and, consequently, fewer predators due to less prey. This demonstrates a
strong form of the tragedy of the commons, where increased fishing depletes the ecosys-
tem’s biomass and negatively affects the interacting industries. This effect is observed
not only in steady-state stocks, but also in the dynamic paths toward system conver-
gence, highlighting the significant biological consequences of depleting lower trophic lev-
els. Ecosystem depletion is more pronounced in the unregulated system than under sole
ownership, where stock flows decrease but remain at relatively high levels.

Figure 3 shows the dynamics of the prey and predator populations with varying num-
bers of predator fishers (i.e., ny = 1, 2, 3) under centralized and decentralized manage-
ment. In an unregulated regime, increased predator fishing leads to predator scarcity and
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Figure 2: Predator-prey dynamics when n̄y = 1

a subsequent rise in prey owing to less predation. A comparison between the centralized
and decentralized systems indicates potential long-term prey overpopulation. Specifically,
in a decentralized system with fewer predator fishers, high predation initially suppressed
prey numbers. However, as predator fishing increases, this effect diminishes, resulting in
a higher prey stock than in the centralized system. These results highlight the complex
trade-offs and potential counterintuitive outcomes in managing interdependent predator-
prey species, in contrast to single-species models.

Figure 3: Predator-prey dynamics when n̄x = 1
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6.2. The effects on predator-prey aggregate harvesting
To bridge the gap between the natural resource management literature and the com-

plexities of ecosystem management, we illustrate prey and predator harvesting dynamics
in our case study. This approach mirrors our methodology for prey and predator flows in
which we fix one industry size and vary it from 1 to 3.

Figure 4 demonstrates that increasing the number of prey fishers escalates fishing
pressure (see Table 1), thereby depleting prey stocks and consequently reducing both har-
vesting quantities and payoffs. Conversely, diminished prey harvesting leads to excessive
predator harvesting because predator fishers gain an advantage from species interactions
under low prey harvest conditions.

Figure 5 illustrates that more predator fishers result in increased predator harvesting
and substantial depletion under the Nash regime. This depletion subsequently facilitates
increased prey harvesting. In a decentralized setting, a reduction in natural predation
pressure prompts prey fishers to shift from underfishing (with a single predator fisher)
to overfishing. Notably, temporal transition dynamics are critical, and are particularly
evident in our case when ny = 2, where we see a distinct switch from underfishing to
overfishing at a specific time.

Figure 4: Prey and predator harvesting flows when n̄y = 1
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Figure 5: Prey and predator harvesting flows when n̄x = 1
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Appendix A. Proof of Lemma 1

Essentially, we must prove that there exists a unique set of parameters, αx, βx, γx, αy, βy, and γy
that solve the Hamilton-Jacobi-Bellman equations. To do this, we rely on an undetermined coefficient
technique to identify the values of the parameters that match the left- and right-hand sides of each
equation after substituting (10) and (11) into (8) and (9).

We can assert that αx and αy are uniquely identifiable because of their linear dependence on the
other parameters :

ραx = βxAx + γxAy (A.1) ραy = βyAx + γyAy (A.2)

Furthermore, γx and βy are also directly identified through βx, γy which are parameters related to
catch rates (see (11)).

γx =
βx

by

(
ρ

1− θ
− β−1/θ

x (
1

1− θ
− nx) + δx

)
(A.3)

βy = −γy
bx

(
ρ

1− θ
− γ−1/θ

y (
1

1− θ
− ny) + δy

)
(A.4)

Finally, the last two equations combined with the values of γx and βy in (A.3) and (A.4) allow us
to reduce the identification problem to only finding a solution to a system of two equations with two
unknowns, βx, γy as follows:(

ρ

1− θ
− β−1/θ

x (
1

1− θ
− nx) + δx

)(
ρ

1− θ
+ δy + nyγ

−1/θ
y

)
+ bxby = 0 (A.5)

(
ρ

1− θ
− γ−1/θ

y (
1

1− θ
− ny) + δy

)(
ρ

1− θ
+ δx + nxβ

−1/θ
x

)
+ bybx = 0. (A.6)

It is immediate that at least one positive solution {βx, γy} emerges if and only if nx, ny < 1
1−θ because

all the parameters involved are strictly positive and this is a sum of positive terms. Using the first order
conditions in (11); that is, ωx = β

−1/θ
x and ωy = γ

−1/θ
y , and factorizing by ωx, ωy, and ωxωy, the system

simplifies to:

−( ρ
1−θ + δy)(

ρ
1−θ + δx)− bybx

ny(
1

1−θ − nx)︸ ︷︷ ︸
K

+ωx

( ρ
1−θ + δy)

ny︸ ︷︷ ︸
R

+ωy

−( ρ
1−θ + δx)

( 1
1−θ − nx)︸ ︷︷ ︸

S

+ωxωy = 0 (A.7)

−( ρ
1−θ + δy)(

ρ
1−θ + δx)− bybx

nx(
1

1−θ − ny)︸ ︷︷ ︸
U

+ωx

−( ρ
1−θ + δy)

( 1
1−θ − ny)︸ ︷︷ ︸

V

+ωy

( ρ
1−θ + δx)

nx︸ ︷︷ ︸
W

+ωxωy = 0, (A.8)

where the constants have the following signs: K < 0, R > 0, S < 0, U < 0, V < 0,W > 0 when
nx < 1

1−θ and ny < 1
1−θ . Taking the difference between (A.7) and (A.8) to eliminate the product of

ωxωy, Equation (A.7) becomes

(K − U) + (R− V )ωx + (S −W )ωy = 0 (A.9)
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Exploring the linearity of this equation leads to the following expression that links ωx and ωy:

ωy(ωx) =
1

(S −W )

(
− (K − U)− (R− V )ωx

)
. (A.10)

We can then substitute this into (A.8), resulting in the following second-order polynomial equation:

Θ(ωx) =

[
SU −WK

(S −W )

]
+ ωx

[
SV −WR−K + U

(S −W )

]
+ ω2

x

[
− (R− V )

(S −W )

]
= 0 (A.11)

Note that Θ(0) < 0 and that the polynomial equation is of usual U-shape ((R − V ) > 0 and
(S − W ) < 0), meaning it has two distinct roots: one positive and the other negative. Using (A.10),
it remains to be verified whether the positive solution to (A.11) implies ωy > 0. To this end, let us
observe that ωy(ωx) is an increasing and affine function with the property ωy(ω

min
x ) = 0 where ωmin

x is
the minimum prey catch rate, leading to a positive predator catch rate. To show that ωmin

x is indeed
lower than the positive solution to (A.11), we must show that the polynomial equation evaluated in ωmin

x

is negative.

Θ(ωmin
x ) =

[
SU −WK

(S −W )

]
+

(
−K + U

R− V

)[
SV −WR−K + U

(S −W )

]
+

(
−K + U

R− V

)2[
− (R− V )

(S −W )

]
(A.12)

⇔

Θ(ωmin
x ) =

1

(R− V )(S −W )︸ ︷︷ ︸
<0

[
SUR︸ ︷︷ ︸
>0

+WKV︸ ︷︷ ︸
>0

−KSV︸ ︷︷ ︸
>0

−WRU︸ ︷︷ ︸
>0

]
< 0 (A.13)

This concludes the identification process.

Appendix B. Proof of Lemma 2

From the theory of linear differential equations (e.g., Hirsch et al. [15]) it is immediate that there
exist a unique solution X(t), Y (t) to the initial value problem that satisfies the initial conditions because
of the linearity of X(0), Y (0) in (17). By considering the system dynamics in (16), we obtain

Det(D) = (1− θ)2
(
(δx + nxωx)(δy + nyωy) + bxby

)
> 0 (B.1)

and

Tr(D) = −(δx + nxωx)− (δy + nyωy) < 0 (B.2)

to ensure that the solution is globally stable.

Appendix C. Proof of Lemma 3

We essentially need to demonstrate that the payoffs along the equilibrium path converge as time
approaches infinity in both industries; that is,

lim
t→∞

e−ρtV x(x(t), y(t)) = 0 and lim
t→∞

e−ρtV y(x(t), y(t)) = 0, (C.1)

or, written differently,

lim
t→∞

e−ρtVx(X(t), Y (t)) = 0 and lim
t→∞

e−ρtVy(X(t), Y (t)) = 0, (C.2)
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depending on the change in the variable in (15). To avoid confusion during the proof, if the system
dynamics begin at time τ ∈ [0,∞), we establish the relations x(τ)1−θ = X(τ) and y(τ)1−θ = Y (τ),
which connect the value function in the initial states, denoted as V (x(t), y(t)), with the value function
in the transformed state, denoted as V (X(t), Y (t)). We examine three distinct cases based on the prop-
erties of matrix D to confirm the convergence of Vx(X(t), Y (t)), and consequently, the convergence of
V x(x(t), y(t)). It is important to note that the same methodology applies to the predator fisher value
function, which is not addressed here.

(i) D has two real eigenvalues

Let λ1 and λ2 be the two distinct negative real eigenvalues of the matrix D, which are calculated as
λ1, λ2 = (Tr(D)±

√
Tr(D)2 − 4Det(D))/2. It follows that

etD = P

[
etλ1 0
0 etλ2

]
P−1, (C.3)

where P represents the eigenvectors associated with the eigenvalues of D. Initializing the system at
X(τ), Y (τ) implies the existence of constants c1, c2, c3, c4, c5, c6, c7, c8 where after conducting algebraic
manipulations, the solutions for the stock variables in (17) can be expressed as follows:

X(t) =

(
c1(X(τ)− X̄) + c2(Y (τ)− Ȳ )

)
etλ1 +

(
c3(X(τ)− X̄) + c4(Y (τ)− Ȳ )

)
etλ2 + X̄ (C.4)

and

Y (t) =

(
c5(X(τ)− X̄) + c6(Y (τ)− Ȳ )

)
etλ1 +

(
c7(X(τ)− X̄) + c8(Y (τ)− Ȳ )

)
etλ2 + Ȳ . (C.5)

The value function of an individual prey fisher, that is, the flow of payoffs along the equilibrium path
when the system starts at t = τ , is by definition equal to

Vx(X(τ), Y (τ)) =
ω1−θ
x

1− θ

∫ ∞

τ

X(t,X(τ), Y (τ))e−ρ(t−τ)dt. (C.6)

Because X(t,X(τ), Y (τ)) is as in (C.4), we can write the value function as

Vx(X(τ), Y (τ)) =
ω1−θ
x

1− θ

(
C1(X(τ), Y (τ))

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ C2(X(τ), Y (τ))

∫ ∞

τ

e(λ2−ρ)(t−τ)dt

(C.7)

+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
,

which is identical to

V x(x(τ), y(τ)) =
ω1−θ
x

1− θ

(
C1(x(τ), y(τ))

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ C2(x(τ), y(τ))

∫ ∞

τ

e(λ2−ρ)(t−τ)dt (C.8)

+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
,

where C1 and C2 are constants that depend on the initial conditions and other model parameters.
The integrals are computed as follows:
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∫ ∞

τ

e(λ1−ρ)(t−τ)dt =
eτ(λ1−ρ)

ρ− λ1
;

∫ ∞

τ

e(λ2−ρ)(t−τ)dt =
eτ(λ2−ρ)

ρ− λ2
;

∫ ∞

τ

e−ρ(t−τ)dt =
e−ρτ

ρ
(C.9)

and converge to finite positive values.

(ii) D has two complex eigenvalues

To address this case, we decompose the real and imaginary components of each eigenvalue as follows:
λ1 = h + vi and λ2 = h − vi, where h = Tr(D)/2 < 0 represents the real part and v = (Tr(D)2 −
4Det(D))/2 < 0 the imaginary part. Consequently, etD takes the form

etD = P

[
et(h+vi) 0

0 et(h−vi)

]
P−1, (C.10)

where matrix P represents the (complex) eigenvectors associated with the complex eigenvalues. We
use Euler’s formula; that is, the continuous-time equivalent of DeMoivre’s theorem, which states that
et(h±vi) = eht(cos(vt)± i sin(vt)). Subsequently, (C.10) is transformed into

etD = Peht
[

cos(vt) + i sin(vt) 0
0 cos(vt)− i sin(vt)

]
P−1. (C.11)

Initializing the system at t = τ and combining (C.11) with (17), we can say that there exists constants,
denoted as k1, k2, k3, k4, k5, k6, k7, k8, where after a series of algebraic computations, and leveraging the
fundamental identity i2 = −1, the solutions for X(t) and Y (t) are

X(t) = eht
[(

k1(X(τ)−X̄)+k2(Y (τ)−Ȳ )

)
cos(vt)+

(
k3(X(τ)−X̄)+k4(Y (τ)−Ȳ )

)
sin(vt)

]
+X̄ (C.12)

and

Y (t) = eht
[(

k5(X(τ)−X̄)+k6(Y (τ)−Ȳ )

)
cos(vt)+

(
k7(X(τ)−X̄)+k8(Y (τ)−Ȳ )

)
sin(vt)

]
+Ȳ . (C.13)

The value function in the transformed state of an individual prey fisher is

Vx(X(τ), Y (τ)) =
ω1−θ
x

1− θ

(
K1(X(τ), Y (τ))

∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt (C.14)

+K2(X(τ), Y (τ))

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt

+X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
and equivalently, after changing X(τ) = x(τ)1−θ,
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V x(x(τ), y(τ)) =
ω1−θ
x

1− θ

(
K1(x(τ), y(τ))

∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt (C.15)

+K2(x(τ), y(τ))

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt

+X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
,

where K1 and K2 are constants that depend on the initial conditions and parameters. The integrals
are computed as follows:∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt =

[
e(h−ρ)(t−τ)((h− ρ) cos(vt) + v sin(vt))

h2 − 2hρ+ v2 + ρ2

]∞
τ

(C.16)

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt =

[
e(h−ρ)(t−τ)((h− ρ) sin(vt)− v cos(vt))

h2 − 2hρ+ v2 + ρ2

]∞
τ

(C.17)

and again ∫ ∞

τ

e−ρ(t−τ)dt =
e−ρτ

ρ
. (C.18)

Given that h < 0 and v < 0 and that co-sinus and sinus functions are bounded between −1 and 1,
we can say that all three integrals converge to finite-positive values.

(iii) D has two repeated real eigenvalues

When D possesses a symmetric real eigenvalue, the eigenspace’s dimension is smaller than that of
matrix D. In this scenario, D is not diagonalizable, necessitating an alternative approach. The repeated
real eigenvalues are denoted by λ = Tr(D)/2 < 0. To address this issue, we define the Jordan canonical
form of P−1DP as

P−1DP =

[
λ 1
0 λ

]
= J, (C.19)

where P represents the Jordan vectors and J is the Jordan canonical form. In this case, the expression
for the matrix exponential etD takes the form

etD = PetJP−1 = Petλ
[

1 t
0 1

]
P−1. (C.20)

Given that the system dynamics starts at t = τ with initial conditions X(τ) and Y (τ), and based
on the form of (C.20), this leads to the presence of constants, denoted as r1, r2, r3, r4, r5, r6, r7, and r8,
which determine the solutions for X(t) and Y (t), respectively, as follows:

X(t) =

(
r1(X(τ)− X̄) + r2(Y (τ)− Ȳ )

)
etλ +

(
r3(X(τ)− X̄) + r4(Y (τ)− Ȳ )

)
teλ

]
+ X̄ (C.21)

and

Y (t) =

(
r5(X(τ)− X̄) + r6(Y (τ)− Ȳ )

)
etλ +

(
r7(X(τ)− X̄) + r8(Y (τ)− Ȳ )

)
teλ

]
+ Ȳ (C.22)

By computing the value function of a specific prey fisher Vx(X(t), Y (t)), we obtain
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Vx(X(τ), Y (τ)) =
ω1−θ
x

1− θ

(
R1(X(τ), Y (τ))

∫ ∞

τ

e(λ−ρ)(t−τ)dt+R2(X(τ), Y (τ))

∫ ∞

τ

te(λ−ρ)(t−τ)dt

(C.23)

+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
.

Equivalently, upon reverting the change in the variable for the prey fish stock to its original form:

V x(x(τ), y(τ)) =
ω1−θ
x

1− θ

(
R1(x(τ), y(τ))

∫ ∞

τ

e(λ−ρ)(t−τ)dt+R2(x(τ), y(τ))

∫ ∞

τ

te(λ−ρ)(t−τ)dt (C.24)

+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
,

where R1 and R2 are constants that depend on the initial conditions. By computing the integrals,
we obtain:

∫ ∞

τ

e(λ−ρ)(t−τ)dt =
eτ(λ−ρ)

ρ− λ
,

∫ ∞

τ

te(λ−ρ)(t−τ)dt =
−λτ + ρτ + 1

(λ− ρ)2
,

∫ ∞

τ

e−ρ(t−τ)dt =
e−ρτ

ρ
. (C.25)

Recall that λ < 0 and ρ > 0; all integrals converge to finite positive values, thus concluding the proof.

Appendix D. Proof of Proposition 1

We now need to demonstrate that along the equilibrium path, the payoffs follow the pattern described
in (10). To establish this, we draw from the findings of Lemma 3 and its corresponding proof in Appendix
C. In addition to the convergence results in Equations (C.7), (C.14), and (C.23), we must establish that
this quantity is both separable and linear under the initial conditions. Similar to the approach used in
Appendix C, we elucidate the structure of the equilibrium value function for a prey fisher based on the
characteristics of matrix D, keeping in mind that the same reasoning applies to the value function of an
individual predator fisher.

(i) D has two real eigenvalues

Considering Equations (C.7) and (C.4), it is clear that C1(X(τ), Y (τ)) and C2(X(τ), Y (τ)) have an
affine relationship with respect to initial conditions. Specifically, there exist coefficients c′1, c′2, c′3, c′4, c′5, c′6
such that

Vx(X(τ), Y (τ)) =
ω1−θ
x

1− θ

(
(c′1 + c′2X(τ) + c′3Y (τ))

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ (c′4 + c′5X(τ) + c′6Y (τ))

∫ ∞

τ

e(λ2−ρ)(t−τ)dt

(D.1)

+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
.

By applying the results of Lemma 3 regarding the convergence of integrals and reorganizing the terms,
the value function is expressed as follows:

Vx(X(τ), Y (τ)) = αx +
βx

1− θ
X(τ) +

γx
1− θ

Y (τ), (D.2)
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or alternatively,

V x(x(τ), y(τ)) = αx +
βx

1− θ
x(τ)1−θ +

γx
1− θ

y(τ)1−θ, (D.3)

where the coefficients αx, βx, and γx can be determined directly from (D.1) as follows:

αx =
ω1−θ
x

1− θ

(
c′1

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ c′4

∫ ∞

τ

e(λ2−ρ)(t−τ)dt+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
(D.4)

βx = ω1−θ
x

(
c′2

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ c′5

∫ ∞

τ

e(λ2−ρ)(t−τ)dt

)
(D.5)

γx = ω1−θ
x

(
c′3

∫ ∞

τ

e(λ1−ρ)(t−τ)dt+ c′6

∫ ∞

τ

e(λ2−ρ)(t−τ)dt

)
. (D.6)

(i) D has two complex eigenvalues

Once more, by leveraging (C.14) and (C.12), we can represent K1 and K2 as affine functions in terms
of initial conditions with k′1, k

′
2, k

′
3, k

′
4, k

′
5, k

′
6, yielding updated values for αx, βx, and γx:

αx =
ω1−θ
x

1− θ

(
k′1

∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt+ k′4

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
(D.7)

βx = ω1−θ
x

(
k′2

∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt+ k′5

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt

)
(D.8)

γx = ω1−θ
x

(
k′3

∫ ∞

τ

cos(vt)e(h−ρ)(t−τ)dt+ k′6

∫ ∞

τ

sin(vt)e(h−ρ)(t−τ)dt

)
. (D.9)

(iii) D has two repeated real eigenvalues

By applying the same techniques and defining the coefficients by r′1, r
′
2, r

′
3, r

′
4, r

′
5, r

′
6, we obtain

αx =
ω1−θ
x

1− θ

(
r′1

∫ ∞

τ

e(λ−ρ)(t−τ)dt+ r′4

∫ ∞

τ

te(λ−ρ)(t−τ)dt+ X̄

∫ ∞

τ

e−ρ(t−τ)dt

)
(D.10)

βx = ω1−θ
x

(
r′2

∫ ∞

τ

e(λ−ρ)(t−τ)dt+ r′5

∫ ∞

τ

te(λ−ρ)(t−τ)dt

)
(D.11)

γx = ω1−θ
x

(
r′3

∫ ∞

τ

e(λ−ρ)(t−τ)dt+ r′6

∫ ∞

τ

te(λ−ρ)(t−τ)dt

)
. (D.12)

This concludes the proof according to the unique functional form of the value function in which linear
harvesting strategies occur.

Appendix E. Proof of Proposition 2

Let α̂, β̂, and γ̂ be the parameters that solve the Hamilton-Jacobi-Bellman equation for the sole-
owner problem. Utilizing a methodology analogous to that used in the proof of Lemma 1 (referenced in
Appendix A), we employ an undetermined coefficient technique. Substituting the first-order conditions
from (25) and the functional form of the value function from (24) into the Hamilton-Jacobi-Bellman
equation in (23), we obtain the following system of equations:

ρα̂ = β̂Ax + γ̂Ay (E.1)
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ρ
β̂

1− θ
= nx

β̂−(1−θ)/θ

1− θ
− β̂(δx + nxβ̂

−1/θ) + γ̂by (E.2)

ρ
γ̂

1− θ
= ny

γ̂−(1−θ)/θ

1− θ
− γ̂(δy + nyγ̂

−1/θ)− β̂bx. (E.3)

Equation (E.1) can be identified directly using β̂ and γ̂. However, (E.2) and (E.3) become:

β̂

(
ρ

1− θ
+ δx − nxβ̂

−1/θ θ

1− θ

)
− γ̂by = 0 (E.4)

γ̂

(
ρ

1− θ
+ δy − nyγ̂

−1/θ θ

1− θ

)
+ β̂bx = 0. (E.5)

Equations (E.4) and (E.5) are equivalent to Equations (26) and (27), respectively. Examining the
linearity of Equation (E.4) in γ̂, we derive the implicit function γ̂(β̂) with the following characteristics:
γ̂

′
> 0, γ̂(β̂) = 0 ⇔ β̂ = (nx(

ρ
1−θ + δx)

1−θ
θ )−θ, and limβ̂→0 γ̂ = −∞. A similar approach applies to

Equation (E.5), yielding the implicit function β̂(γ̂) with the characteristics β̂
′
< 0, β̂(γ̂) = 0 ⇔ γ̂ =

(ny(
ρ

1−θ + δy)
1−θ
θ )−θ, and limγ̂→0 β̂ = ∞. These properties guarantee the existence of a unique pair

{β̂, γ̂}, and consequently, a unique pair {ω̂x, ω̂y}.

Appendix F. The effect of industry size on equilibrium catch rates (Table 1)

The proofs of the comparative statics rely on the application of the implicit function theorem.

Appendix F.1. The effect of nx and ny on ωNE
x (nx, ny) and ωNE

y (nx, ny)

Recall that the system of equations that provides the solutions {ωNE
x , ωNE

y } is given by (A.7) and
(A.8):

φ(ωx, ωy) =

[
φ1(ωx, ωy)
φ2(ωx, ωy)

]
=



−( ρ
1−θ + δy)(

ρ
1−θ + δx)− bybx

ny(
1

1−θ − nx)︸ ︷︷ ︸
K

+ωx

( ρ
1−θ + δy)

ny︸ ︷︷ ︸
R

+ωy

−( ρ
1−θ + δx)

( 1
1−θ − nx)︸ ︷︷ ︸

S

+ωxωy

−( ρ
1−θ + δy)(

ρ
1−θ + δx)− bybx

nx(
1

1−θ − ny)︸ ︷︷ ︸
U

+ωx

−( ρ
1−θ + δy)

( 1
1−θ − ny)︸ ︷︷ ︸

V

+ωy

( ρ
1−θ + δx)

nx︸ ︷︷ ︸
W

+ωxωy.


(F.1)

The Jacobian matrix is :

∂φ =

[
R+ ωy S + ωx

V + ωy W + ωx

]
=

[
+ +
+ +,

]
(F.2)

where R+ ωy and W + ωx are both positive. In contrast, S + ωx and V + ωy can be rewritten as

S + ωx =
−ρ/(1− θ)− δx + ωx/(1− θ)− ωxnx

1/(1− θ)− nx
(F.3)

and
V + ωy =

−ρ/(1− θ)− δy + ωy/(1− θ)− ωyny

1/(1− θ)− ny
. (F.4)

Using the fact that, at the equilibrium, (12) and (13) are satisfied, we obtain
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bxby =

(
− ρ/(1− θ)− δx + ωx/(1− θ)− ωxnx

)(
ρ/(1− θ) + δy + nyωy

)
> 0 (F.5)

and

bxby =

(
− ρ/(1− θ)− δy + ωy/(1− θ)− ωyny

)(
ρ/(1− θ) + δx + nxωx

)
> 0, (F.6)

which allows us to conclude that S + ωx > 0 and V + ωy > 0. The determinant of the Jacobian
matrix is

det
(
∂φ|φ(ωx,ωy)=0

)
=

∣∣∣∣ R+ ωy S + ωx

V + ωy W + ωx

∣∣∣∣ = RW − SV + (R− V )ωx + (W − S)ωy, (F.7)

where R − V > 0 and W − S > 0. To ensure the positivity of the determinant, we must verify that
RW−SV is positive. Using (F.1) we can verify that RW−SV > 0 if (1−nx(1−θ))(1−ny)(1−θ)−nxny > 0
which is true under the following additional sufficient condition: nx+ny ≤ 1

1−θ . By applying the implicit
function theorem to (F.1), we obtain[

∂ωx

∂p
∂ωy

∂p

]
p∈{nx,ny}

= −
(
∂(ωx,ωy)φ

∣∣
φ(ωx,ωy)=0

)−1 (
∂nx,ny

φ
∣∣
φ(ωx,ωy)=0

)
, (F.8)

where

−
(
∂(ωx,ωy)φ

∣∣
φ(ωx,ωy)=0

)−1

= −
(
det

(
∂φ|φ(ωx,ωy)=0

))−1
[

W + ωx −(S + ωx)
−(V + ωy) R+ ωy

]
=

[
− +
+ −.

]
It remains to differentiate (F.1) with respect to industry size

(
∂(nx,ny)φ

∣∣
φ(ωx,ωy)=0

)
=

[
∂nxϕ1 ∂nyϕ1

∂nxϕ2 ∂nyϕ2

]
=

[
− +
+ −

]

∂nx
ϕ1 =

−ny

(
( ρ
1−θ + δy)(

ρ
1−θ + δx) +ByBx

)
n2
y(

1
1−θ − nx)2

− ωy

( ρ
1−θ + δx)

( 1
1−θ − nx)2

< 0 (F.9)

∂ny
ϕ2 =

−nx

(
( ρ
1−θ + δy)(

ρ
1−θ + δx) +ByBx

)
n2
x(

1
1−θ − ny)2

− ωx

( ρ
1−θ + δy)

( 1
1−θ − ny)2

< 0 (F.10)

∂nx
ϕ2 =

1

n2
x(1/(1− θ)− ny)

(
− ρ

(1− θ)
− δy +

ωy

(1− θ)
− ωyny

)
nxωx > 0 (F.11)

∂ny
ϕ1 =

1

n2
y(1/(1− θ)− nx)

(
− ρ

(1− θ)
− δx +

ωx

(1− θ)
− ωxnx

)
nyωy > 0, (F.12)

where (− ρ
(1−θ) − δy +

ωy

(1−θ) − ωyny) and (− ρ
(1−θ) − δx +

ωx

(1−θ) − ωxnx) are positives using the optimality
conditions in (12) and (13). Thus, we deduce the following directly:

∂ωNE
x

∂nx
> 0,

∂ωNE
x

∂ny
< 0,

∂ωNE
y

∂nx
< 0,

∂ωNE
y

∂ny
> 0. (F.13)
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Appendix F.2. The effect of nx and ny on ω̂x(nx, ny) and ω̂y(nx, ny)
In an efficient allocation, the system that provides the solution {ω̂x, ω̂y} is given by Equations (26)

and (27):

φ̂(ω̂x, ω̂y) =

[
φ̂1(ω̂x, ω̂y)
φ̂2(ω̂x, ω̂y)

]
=

 ω̂−θ
x

(
ρ

1−θ + δx − nxω̂x
θ

1−θ

)
− ω̂−θ

y by

ω̂−θ
y

(
ρ

1−θ + δy − nyω̂y
θ

1−θ

)
+ ω̂−θ

x bx.

 (F.14)

The Jacobian matrix is

∂φ̂ =

[
−θω̂−θ

x [( ρ
1−θ + δx)ω̂

−1
x + nx] θω̂−θ−1

y by
−θω̂−θ−1

x bx −θω̂−θ
y [( ρ

1−θ + δy)ω̂
−1
y + ny]

]
=

[
− +
− −.

]
(F.15)

Through computations, we obtain det
(
∂φ̂|φ̂(ω̂x,ω̂y)=0

)
> 0directly. By applying the Implicit Func-

tion Theorem, we know that[
∂ω̂x

∂p
∂ω̂y

∂p

]
p∈{nx,ny}

= −
(
∂(ω̂x,ω̂y)φ̂

∣∣
φ̂(ω̂x,ω̂y)=0

)−1 (
∂nx,ny

φ̂
∣∣
φ̂(ω̂x,ω̂y)=0

)
, (F.16)

where

−
(
∂(ω̂x,ω̂y)φ̂

∣∣
φ̂(ω̂x,ω̂y)=0

)−1

= −
(
det

(
∂φ̂|φ̂(ω̂x,ω̂y)=0

))−1
[

− −
+ −

]
=

[
+ +
− +.

]
Taking the derivative of (F.14) with respect to industry size, nx and ny, we obtain

(
∂(nx,ny)φ̂

∣∣
φ̂(ω̂x,ω̂y)=0

)
=

[
− θω̂1−θ

x

1−θ 0

0 − θω̂1−θ
y

1−θ

]
=

[
− 0
0 −.

]
(F.17)

From (F.16), we directly deduce the following:

∂ω̂x

∂nx
< 0,

∂ω̂x

∂ny
< 0,

∂ω̂y

∂nx
> 0,

∂ω̂y

∂ny
< 0. (F.18)

Appendix G. Proof of proposition 3

To prove the first point of this proposition, we essentially need to compare the systems of Equations
(A.3), (A.4), (A.5), and (A.6) characterizing the Nash solution with those describing the optimal allo-
cation in Equations (E.4) and (E.5) for individual prey catch rate. The second point in the proposition
arises directly from the counterexample in Figure 1.

Using Equations (A.3) and (A.5), we obtain γx < 0. Using (E.4) and (E.5), we find that γ̂ > 0.
Recall that γx and γ̂ are identified by the following equations:

γx = f1(βx, nx) =
βx

by

(
ρ

1− θ
+ δx − β−1/θ

x

(
1

1− θ
− nx

))
< 0 (G.1)

γ̂ = f2(β̂, nx) =
β̂

by

(
ρ

1− θ
+ δx − nxβ̂

−1/θ θ

1− θ

)
> 0. (G.2)

For all nx satisfying our assumptions, we can assert that

f1(βx, nx) < f2(β̂, nx). (G.3)
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This holds true when nx = 1, which implies that

f1(βx, 1) < f1(βx, nx) < f2(β̂, nx) < f2(β̂, 1) = f1(β̂, 1). (G.4)

Because ∂nx
f1 > 0, ∂nx

f2 < 0 and f1 are increasing in β, we conclude that βx < β̂. Therefore, using
the first-order conditions, we can infer that ωNE

x (nx, ny) > ω̂x(nx, ny), but also that nxω
NE
x (nx, ny) >

nxω̂x(nx, ny).
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